Advertisements
Advertisements
Question
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Sum
Solution
We know cos 2x = `2cos^2x - 1`
⇒ cos x = `2cos^2 x/2 - 1`
⇒ 1 + cos x = `2cos^2 x/2`
`int_0^(pi/2) sqrt(2 cos^2 x/2) "d"x = int_0^(pi/2) sqrt(2) cos x/2 "d"x`
= `[(sqrt(2) sin x/2)/(1/2)]_0^(pi/2)`
= `2sqrt(2) sin pi/4 - 2sqrt(2) sin 0`
= `2sqrt(2) (1/sqrt(2))`
= 2
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]
\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
\[\int\limits_0^2 \left( x + 3 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]
\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]
Solve each of the following integral:
\[\int_2^4 \frac{x}{x^2 + 1}dx\]
\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]