मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Using second fundamental theorem, evaluate the following: d∫0π21+cosx dx - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`

बेरीज

उत्तर

We know cos 2x = `2cos^2x - 1`

⇒ cos x = `2cos^2  x/2 - 1`

⇒ 1 + cos x = `2cos^2  x/2`

`int_0^(pi/2) sqrt(2 cos^2  x/2)  "d"x = int_0^(pi/2) sqrt(2) cos  x/2  "d"x`

= `[(sqrt(2) sin  x/2)/(1/2)]_0^(pi/2)`

= `2sqrt(2) sin  pi/4 - 2sqrt(2) sin 0`

= `2sqrt(2) (1/sqrt(2))`

= 2

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Integral Calculus – 1 - Exercise 2.8 [पृष्ठ ४७]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 2 Integral Calculus – 1
Exercise 2.8 | Q I.8 | पृष्ठ ४७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×