Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
बेरीज
उत्तर
We know cos 2x = `2cos^2x - 1`
⇒ cos x = `2cos^2 x/2 - 1`
⇒ 1 + cos x = `2cos^2 x/2`
`int_0^(pi/2) sqrt(2 cos^2 x/2) "d"x = int_0^(pi/2) sqrt(2) cos x/2 "d"x`
= `[(sqrt(2) sin x/2)/(1/2)]_0^(pi/2)`
= `2sqrt(2) sin pi/4 - 2sqrt(2) sin 0`
= `2sqrt(2) (1/sqrt(2))`
= 2
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]
\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
Evaluate each of the following integral:
\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]
\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is