Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
पर्याय
`int_"a"^"b" f(x) "d"x - int_"a"^"c" f(x) "d"x`
`int_"a"^"c" f(x) "d"x - int_"a"^"b" f(x) "d"x`
`int_"a"^"b" f(x) "d"x`
0
MCQ
उत्तर
`int_"a"^"b" f(x) "d"x`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]
\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]
\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]
\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]
\[\int\limits_0^{\pi/2} x \sin x\ dx\] is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is