Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^a \sqrt{a^2 - x^2} d x . \]
\[Let\ x = a\ \sin\ t . Then\, dx = a\ \cos\ t\ dt\]
\[When\ x = 0, t = 0\ and\ x\ = a, t = \frac{\pi}{2}\]
\[ \therefore I = \int_0^a \sqrt{a^2 - x^2} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sqrt{\left( a^2 - a^2 \sin^2 t \right)} a \cos\ t\ d\ t\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} a^2 \cos^2 t\ dt\]
\[ \Rightarrow I = a^2 \int_0^\frac{\pi}{2} \frac{1 + \cos 2t}{2} dt\]
\[ \Rightarrow I = \frac{a^2}{2} \left[ t + \frac{\sin 2t}{2} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{a^2}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.