Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
\[Let, x = a \tan^2 \theta \Rightarrow \theta = \tan^{- 1} \sqrt{\frac{x}{a}}\]
\[When, x \to x ; \theta \to 0\ and\ x\ \to a ; \theta \to \frac{\pi}{4}\]
\[and\ dx\ = 2a \tan\theta se c^2 \theta d\theta\]
\[Then, \]
\[I = \int\limits_0^\frac{\pi}{4} \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} 2a \tan\theta se c^2 \theta\ d\theta\]
\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \sin^{- 1} \left( \sin\theta \right) \tan\theta se c^2 \theta d\theta\]
\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \theta \tan\theta se c^2 \theta d\theta\]
\[Let, \tan \theta = t \Rightarrow \theta = \tan^{- 1} t\]
\[ \Rightarrow se c^2 \theta d\theta = dt\]
\[when, \theta \to 0 ; t \to 0 and \theta \to \frac{\pi}{4} ; t \to 1\]
\[Then, I = 2a \int_0^1 \tan^{- 1} t\ t \ dt\]
\[ = 2a \int_0^1 \tan^{- 1} t\ t\ dt\]
\[ = 2a \left[ \tan^{- 1} t \frac{t^2}{2} \right]_0^1 - \frac{2a}{2} \int_0^1 \frac{t^2}{1 + t^2} dt\]
\[ = 2a\left[ \frac{\pi}{4} \times \frac{1}{2} - 0 \right] - a \int_0^1 \left[ 1 - \frac{1}{1 + t^2} \right] dt\]
\[ = 2a\left[ \frac{\pi}{8} \right] - a \left[ t - \tan^{- 1} t \right]_0^1 \]
\[ = \frac{\pi a}{4} - a\left[ 1 - \frac{\pi}{4} \right]\]
\[ = \frac{\pi a}{4} - a + \frac{\pi a}{4}\]
\[ = \frac{\pi a}{2} - a\]
\[ = a\left( \frac{\pi}{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
Γ(4)
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.