मराठी

A ∫ 0 Sin − 1 √ X a + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
बेरीज

उत्तर

\[Let\, I = \int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[Let, x = a \tan^2 \theta \Rightarrow \theta = \tan^{- 1} \sqrt{\frac{x}{a}}\]

\[When, x \to x ; \theta \to 0\ and\ x\ \to a ; \theta \to \frac{\pi}{4}\]

\[and\ dx\ = 2a \tan\theta se c^2 \theta d\theta\]

\[Then, \]

\[I = \int\limits_0^\frac{\pi}{4} \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} 2a \tan\theta se c^2 \theta\ d\theta\]

\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \sin^{- 1} \left( \sin\theta \right) \tan\theta se c^2 \theta d\theta\]

\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \theta \tan\theta se c^2 \theta d\theta\]

\[Let, \tan \theta = t \Rightarrow \theta = \tan^{- 1} t\]

\[ \Rightarrow se c^2 \theta d\theta = dt\]

\[when, \theta \to 0 ; t \to 0 and \theta \to \frac{\pi}{4} ; t \to 1\]

\[Then, I = 2a \int_0^1 \tan^{- 1} t\ t \ dt\]

\[ = 2a \int_0^1 \tan^{- 1} t\ t\ dt\]

\[ = 2a \left[ \tan^{- 1} t \frac{t^2}{2} \right]_0^1 - \frac{2a}{2} \int_0^1 \frac{t^2}{1 + t^2} dt\]

\[ = 2a\left[ \frac{\pi}{4} \times \frac{1}{2} - 0 \right] - a \int_0^1 \left[ 1 - \frac{1}{1 + t^2} \right] dt\]

\[ = 2a\left[ \frac{\pi}{8} \right] - a \left[ t - \tan^{- 1} t \right]_0^1 \]

\[ = \frac{\pi a}{4} - a\left[ 1 - \frac{\pi}{4} \right]\]

\[ = \frac{\pi a}{4} - a + \frac{\pi a}{4}\]

\[ = \frac{\pi a}{2} - a\]

\[ = a\left( \frac{\pi}{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 52 | पृष्ठ ४०

संबंधित प्रश्‍न

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

Γ(4)


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×