मराठी

Π ∫ 0 1 1 + Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

उत्तर

\[Let\ I = \int_0^\pi \frac{1}{1 + \sin x} d\ x\ . Then, \]

\[ I = \int_0^\pi \frac{1 - \sin x}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)} d x\]

\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x} dx \]

\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{\cos^2 x} dx \left[ \because \sin^2 x + \cos^2 x = 1 \right]\]

\[ \Rightarrow I = \int_0^\pi \sec^2 x - \sec x \tan x dx\]

\[ \Rightarrow I = \left[ \tan x - \sec x \right]_0^\pi \]

\[ \Rightarrow I = \left( \tan \pi - \sec \pi \right) - \left( \tan 0 - \sec 0 \right)\]

\[ \Rightarrow I = 0 + 1 - \left( 0 - 1 \right)\]

\[ \Rightarrow I = 1 + 1\]

\[ \Rightarrow I = 2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 15 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×