Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi \frac{1}{1 + \sin x} d\ x\ . Then, \]
\[ I = \int_0^\pi \frac{1 - \sin x}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x} dx \]
\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{\cos^2 x} dx \left[ \because \sin^2 x + \cos^2 x = 1 \right]\]
\[ \Rightarrow I = \int_0^\pi \sec^2 x - \sec x \tan x dx\]
\[ \Rightarrow I = \left[ \tan x - \sec x \right]_0^\pi \]
\[ \Rightarrow I = \left( \tan \pi - \sec \pi \right) - \left( \tan 0 - \sec 0 \right)\]
\[ \Rightarrow I = 0 + 1 - \left( 0 - 1 \right)\]
\[ \Rightarrow I = 1 + 1\]
\[ \Rightarrow I = 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find: `int logx/(1 + log x)^2 dx`