Advertisements
Advertisements
प्रश्न
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
उत्तर
\[\int_\frac{- \pi}{4}^\frac{\pi}{4} \left| \tan x \right| d x\]
\[ = \int_\frac{- \pi}{4}^0 - \tan x dx + \int_0^\frac{\pi}{4} \tan x dx\]
\[ = \left[ \log \left( \cos x \right) \right]_\frac{- \pi}{4}^0 + \left[ - \log \left( \cos x \right) \right]_0^\frac{\pi}{4} \]
\[ = - \log\frac{1}{\sqrt{2}} - \log\frac{1}{\sqrt{2}}\]
\[ = 2\log\sqrt{2}\]
\[ = \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
If f is an integrable function, show that
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`