मराठी

∞ ∫ 0 Log ( X + 1 X ) 1 1 + X 2 D X = (A) π Ln 2 (B) −π Ln 2 (C) 0 (D)− π 2 Ln 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

पर्याय

  • π ln 2

  • −π ln 2

  • 0

  • \[- \frac{\pi}{2}\ln 2\]

MCQ

उत्तर

π ln 2

\[\int_0^\infty \log \left( x + \frac{1}{x} \right) \frac{1}{1 + x^2}dx\]

Substitute x = tan θ

⇒ dx = sec2 θ dθ.

when,

= 0  ⇒ θ = 0

\[x = \infty \Rightarrow \theta = \frac{\pi}{2}\]

\[ \int_0^\frac{\pi}{2} \left( \tan \theta + \frac{1}{\tan \theta} \right)\frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]

\[ \int_0^\frac{\pi}{2} \log \left( \frac{\tan^2 \theta + 1}{\tan\theta} \right) \frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)\frac{1}{\sec^2 \theta} \times \sec^2 \theta d\theta ................\left[ \because 1 + \tan^2 \theta = \sec^2 \theta \right]\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)d\theta\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{1}{\sin \theta . \cos \theta} \right)d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \left[ \log \sin \theta + \log \cos \theta \right]d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \sin \theta d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

Let us consider, 

\[\int_0^\frac{\pi}{2} \log \sin \theta d\theta = I .................(1)\]

\[ \Rightarrow I = \int_0^\frac{\pi}{2} \log \left( \sin \left( \frac{\pi}{2} - \theta \right) \right)d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \cos \theta d\theta ..................(2)\]

\[\text{Adding (1) and (2)}\]

\[2I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta + \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \left( \sin 2\theta \right)d\theta - \int_0^\frac{\pi}{2} \log 2d\theta\]

\[\text{Let us consider } 2\theta = t\]

\[2d\theta = dt\]

\[2I = \frac{1}{2} \int_0^\pi \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2\]

\[2I = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2 ................\left[ \because \sin \theta \text{ is positive in both } 1^{st} \text{ and }2^{nd} \text{ quadrants} \right]\]

\[2I = I - \frac{\pi}{2}\log 2\]

\[2I - I = - \frac{\pi}{2}\log 2\]

\[I = - \frac{\pi}{2}\log 2, where I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta\]

\[Now, \]

\[ - \int_0^\frac{\pi}{2} \log\left( \sin \theta \right)d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

\[ - 2 \int_0^\frac{\pi}{2} \log \sin \theta d\theta = - 2 \times I\]

\[ = - 2 \times - \frac{\pi}{2}\log 2 .............\left[ \because \text{where} I = - \frac{\pi}{2}\log2 \right]\]

\[ = \pi \log 2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 37 | पृष्ठ १२०

संबंधित प्रश्‍न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×