Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin x\cos x}{\cos^2 x + m^2 \sin^2 x}dx\]
Put
\[\therefore 2\cos x\left( - \sin x \right)dx + m^2 \times 2\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow 2\left( m^2 - 1 \right)\sin x\cos\ x\ dx = dz\]
\[ \Rightarrow \sin x\cos\ x\ dx = \frac{dz}{2\left( m^2 - 1 \right)}\]
When
When
\[\therefore I = \frac{1}{2\left( m^2 - 1 \right)} \int_1^{m^2} \frac{dz}{z}\]
\[ = \left.\frac{1}{2\left( m^2 - 1 \right)} \log z\right|_1^{m^2} \]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( \log m^2 - \log1 \right)\]
\[ = \frac{1}{2\left( m^2 - 1 \right)}\left( 2\log\left| m \right| - 0 \right)\]
\[ = \frac{\log\left| m \right|}{m^2 - 1}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Prove that:
Evaluate :
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int x^3/(x + 1)` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.