मराठी

∫x3x+1 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int x^3/(x + 1)` is equal to ______.

पर्याय

  • `x + x^2/2 + x^3/3 - log|1 - x| + "C"`

  • `x + x^2/2 - x^3/3 - log|1 - x| + "C"`

  • `x - x^2/2 - x^3/3 - log|1 + x| + "C"`

  • `x - x^2/2 + x^3/3 - log|1 + x| + "C"`

MCQ
रिकाम्या जागा भरा

उत्तर

`int x^3/(x + 1)` is equal to `x - x^2/2 + x^3/3 - log|1 + x| + "C"`.

Explanation:

I = `int x^3/(x + 1)`

= `int (x^3 + 1 - 1)/(x + 1) "d"x`

= `int (x^3 + 1)/(x + 1) "d"x - int 1/(x + 1) "d"x`

= `int (x^2 - x + 1)"d"x - int 1/(x + 1) "d"x`

= `x^3/3 - x^2/2 + x - log|x + 1| + "C"`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 54 | पृष्ठ १६८

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×