Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
उत्तर
`int_1^4` f(x) dx = `int_1^2 "f"(x) "d"x + int_2^4 "f"(x) "d"x`
= `int_1^2 (4x + 3) "d"x + int_2^4 (3x + 5) "d"x`
= `[4(x^2/2) + 3x]_1^2 + [3(x^2/2) + 5x]_2^4`
= `[2x^2 +3x]_1^2 + [3/2 x^2 + 5x]_2^4`
= `[2(2)^2 + 3(2)] - [2(1)^2 + 3(1)] + [3/2(4)^2 + 5(4)] - [3/2 (2)^2+ 5(2)]`
= `[2(4) + 6] - [2 + 3] + [3/ (16) + 20] - [3/2 (4) + 10]`
= [8 + 6] – [5] + [24 + 20] – [6 + 10]
= 14 – 5 + 44 – 16
= 58 – 21
= 37
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`