Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
पर्याय
0
2
8
4
उत्तर
8
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}} d x\]
\[ = \int_0^{2\pi} \sqrt{\sin^2 \frac{x}{4} + \cos^2 \frac{x}{4} + 2\sin\frac{x}{4}\cos\frac{x}{4}} d x\]
\[ = \int_0^{2\pi} \left( \sin\frac{x}{4} + \cos\frac{x}{4} \right)dx\]
\[ = \left[ \frac{- \cos\frac{x}{4}}{\frac{1}{4}} + \frac{\sin\frac{x}{4}}{\frac{1}{4}} \right]_0^{2\pi} \]
\[ = 4 \left[ \sin\frac{x}{4} - \cos\frac{x}{4} \right]_0^{2\pi} \]
\[ = 4\left[ \sin\frac{2\pi}{4} - \cos\frac{2\pi}{4} - \sin 0 + \cos 0 \right]\]
\[ = 4\left[ \sin\frac{\pi}{2} - \cos\frac{\pi}{2} - 0 + 1 \right]\]
\[ = 4\left[ 1 - 0 - 0 + 1 \right]\]
\[ = 4 \times 2\]
\[ = 8\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If f(2a − x) = −f(x), prove that
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.