Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
बेरीज
उत्तर
`int_1^2 (x "d"x)/(x^2 + 1) = 1/2 int_1^2 (2xdx)/(x^2 + 1)`
= `1/2 int_1^2 ("d"(x^2 + 1))/(x^2 + 1)`
=`1/2 [log|x^2 + 1|]_1^2`
= `1/2 [log|2^2 + 1| - log|1^2+ 1|]`
= `1/2 [log 5 - log 2]`
= `1/2 log[5/2]` .......`{"Using" log "a" - log "b" = log ("a"/"b")}`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]
\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
\[\int\limits_0^2 \left( x^2 + x \right) dx\]
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.
\[\int\limits_0^{\pi/2} x \sin x\ dx\] is equal to
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`