Advertisements
Advertisements
प्रश्न
पर्याय
π/4
π/2
π
1
उत्तर
1
\[\text{We have}, \]
\[ I = \int_0^\frac{\pi}{2} x \sin x\ d x \]
\[ = \left[ - x \cos x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1\left( - \cos x \right) d x\]
\[ = \left[ - x \cos x \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} \cos x\ d x\]
\[ = - \left[ x \cos x \right]_0^\frac{\pi}{2} + \left[ \sin x \right]_0^\frac{\pi}{2} \]
\[ = - \left[ 0 - 0 \right] + \left[ 1 - 0 \right]\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
If f(x) is a continuous function defined on [−a, a], then prove that
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: