मराठी

Verify the following : dC∫x-12x+3dx=x-log|(2x+3)2|+C - Mathematics

Advertisements
Advertisements

प्रश्न

Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`

बेरीज

उत्तर

L.H.S. = `int (2x - 1)/(2x + 3) "d"x`

⇒ `int (1 - 4/(2x + 3)) "d"x`  .....[Dividing the numerator by the denominator]

⇒ `int 1 * "d"x - 4 int 1/(2x + 3) "d"x`

⇒ `int 1 * "d"x - 4/2 int 1/(x + 3/2) "d"x`

⇒ `int 1 * "d"x - 2 int 1/(x + 3/2) "d"x`

⇒ `x - 2 log |x + 3/2| + "C"`

⇒ `x - 2 log |(2x + 3)/2| + "C"`

⇒ `x - log|((2x + 3)/2)^2| + "C"` ....[∵ n log m = log mn]

⇒ `x - log |(2x + 3)^2| - log 2^2 + "C"`

⇒ `x - log |(2x + 3)^2| + "C"_1`

⇒ R.H.S.  ......[Where C1 = C – log 22]

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 1 | पृष्ठ १६३

संबंधित प्रश्‍न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×