मराठी

Π ∫ 0 X Tan X Sec X C O S E C X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]
बेरीज

उत्तर

\[Let I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} d x .............(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) \cos ec\left( \pi - x \right)} dx .............\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \frac{- \left( \pi - x \right)\tan x}{- sec\ x \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan x}{secx \cos ecx}dx ................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} + \frac{\left( \pi - x \right)\tan x}{secx \ cosec\ x} d x\]
\[ = \int_0^\pi \left( x + \pi - x \right)\frac{\tan x}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\pi\ tanx}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \pi\ sin^2 x dx\]
\[ = \pi \int_0^\pi \left( 1 - \cos^2 x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \frac{\pi}{2} \int_0^\pi \left( 1 + \cos2x \right) dx\]
\[ = \frac{\pi}{2} \left[ x \right]_0^\pi - \frac{\pi}{2} \left[ \frac{\sin2x}{2} \right]_0^\pi \]
\[ = \frac{\pi^2}{2}\]
\[Hence\, I = \frac{\pi^2}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 11 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×