Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} d x .............(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) \cos ec\left( \pi - x \right)} dx .............\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \frac{- \left( \pi - x \right)\tan x}{- sec\ x \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan x}{secx \cos ecx}dx ................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} + \frac{\left( \pi - x \right)\tan x}{secx \ cosec\ x} d x\]
\[ = \int_0^\pi \left( x + \pi - x \right)\frac{\tan x}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\pi\ tanx}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \pi\ sin^2 x dx\]
\[ = \pi \int_0^\pi \left( 1 - \cos^2 x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \frac{\pi}{2} \int_0^\pi \left( 1 + \cos2x \right) dx\]
\[ = \frac{\pi}{2} \left[ x \right]_0^\pi - \frac{\pi}{2} \left[ \frac{\sin2x}{2} \right]_0^\pi \]
\[ = \frac{\pi^2}{2}\]
\[Hence\, I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`