Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
उत्तर
\[Let I = \int_0^\pi \frac{x \tan x}{sec x + \tan x} d x ...........(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) + \tan\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan x}{\sec x + \tan x} d x ................(2)\]
Adding (1) and (2) we get
\[2I = \int_0^\pi \frac{\pi \tan x}{\sec x + \tan x} d x\]
\[ = \pi \int_0^\pi \frac{sinx}{1 + sin x}dx\]
\[ = \pi \int_0^\pi \frac{1 + sin x - 1}{1 + sin x}dx\]
\[ = \pi \int_0^\pi \left[ 1 - \frac{1}{1 + sinx} \right]dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \int_0^\pi \frac{1}{1 + \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\tan\frac{x}{2}}dx\]
\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( 1 + \tan\frac{x}{2} \right)^2}dx\]
\[ = \pi^2 + \pi \left[ \frac{2}{1 + \tan\frac{x}{2}} \right]_0^\pi \]
\[ = \pi^2 + \pi\left( 0 - 2 \right)\]
\[ = \pi^2 - 2\pi\]
\[ = \pi\left( \pi - 2 \right)\]
\[\text{Hence }I = \frac{\pi}{2}\left( \pi - 2 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
If n > 0, then Γ(n) is
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.