मराठी

Prove that ∫ B a ƒ ( X ) D X = ∫ B a ƒ ( a + B − X ) D X and Hence Evaluate ∫ π 3 π 6 D X 1 + √ Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`

बेरीज

उत्तर

let a + b - x = t

⇒ dx = -dt

when x = a,t = b and x = b,t = a

`int_a^b ƒ("x") d"x" = -int_b^aƒ(a + b -"t")d"t"`

= `int_a^bƒ(a + b -"t")d"t"              ...[∵ int_a^b ƒ("x") d"x" = -int_b^a ƒ("x") d"x"]`

= `int_a^bƒ(a + b -"x")d"x"            ...[∵ int_a^b ƒ("x") d"x" = int_a^b ƒ("t") d"t"]`

Hence proved.

let `I = int_(π/6)^(π/3) (d"x")/(1+ sqrt(tan "x")) = int_(π/6)^(π/3)(sqrt(cos"x")d"x")/(sqrt(cos"x")+ sqrt(sin"x"))`           .....(ii)

Then, using the property from (i)

`I = int_(π/6)^(π/3) (sqrtcos(π/3 + π/6 - "x") d"x")/ (sqrtcos(π/3 + π/6 - "x") + sqrtsin(π/3 + π/6 - "x"))`

= `int_(π/6)^(π/3) (sqrt(sin"x")d"x")/(sqrt(sin"x") + sqrt(cos"x")`                                                   ......(iii)

Adding (ii) and (iii), we get

`2I = int_(π/6)^(π/3)d"x" = ["x"](π/3)/(π/6) = π/3 - π/6 = π/6`

⇒ `I = π/12`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/1

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×