Advertisements
Advertisements
प्रश्न
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
उत्तर
let a + b - x = t
⇒ dx = -dt
when x = a,t = b and x = b,t = a
`int_a^b ƒ("x") d"x" = -int_b^aƒ(a + b -"t")d"t"`
= `int_a^bƒ(a + b -"t")d"t" ...[∵ int_a^b ƒ("x") d"x" = -int_b^a ƒ("x") d"x"]`
= `int_a^bƒ(a + b -"x")d"x" ...[∵ int_a^b ƒ("x") d"x" = int_a^b ƒ("t") d"t"]`
Hence proved.
let `I = int_(π/6)^(π/3) (d"x")/(1+ sqrt(tan "x")) = int_(π/6)^(π/3)(sqrt(cos"x")d"x")/(sqrt(cos"x")+ sqrt(sin"x"))` .....(ii)
Then, using the property from (i)
`I = int_(π/6)^(π/3) (sqrtcos(π/3 + π/6 - "x") d"x")/ (sqrtcos(π/3 + π/6 - "x") + sqrtsin(π/3 + π/6 - "x"))`
= `int_(π/6)^(π/3) (sqrt(sin"x")d"x")/(sqrt(sin"x") + sqrt(cos"x")` ......(iii)
Adding (ii) and (iii), we get
`2I = int_(π/6)^(π/3)d"x" = ["x"](π/3)/(π/6) = π/3 - π/6 = π/6`
⇒ `I = π/12`
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(2a − x) = −f(x), prove that
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`