मराठी

2 ∫ 1 1 X ( 1 + Log X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

उत्तर

\[Let\ 1 + \log\ x\ = t . Then, \frac{1}{x}\ dx\ = dt\]
\[When\ x = 1, t = 1\ and\ x\ = 2, t = \left( 1 + \log 2 \right)\]
\[ \therefore I = \int_1^2 \frac{1}{x \left( 1 + \log x \right)^2} d x\]
\[ \Rightarrow I = \int_1^\left( 1 + \log 2 \right) \frac{1}{t^2} dt\]
\[ \Rightarrow I = \left[ \frac{- 1}{t} \right]_1^\left( 1 + \log 2 \right) \]
\[ \Rightarrow I = - \frac{1}{\left( 1 + \log 2 \right)} + 1\]
\[ \Rightarrow I = \frac{\log 2}{\log\ 2 + \log e}\]
\[ \Rightarrow I = \frac{\log 2}{\log\ 2e}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 2 | पृष्ठ ३८

संबंधित प्रश्‍न

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×