Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ 1 + \log\ x\ = t . Then, \frac{1}{x}\ dx\ = dt\]
\[When\ x = 1, t = 1\ and\ x\ = 2, t = \left( 1 + \log 2 \right)\]
\[ \therefore I = \int_1^2 \frac{1}{x \left( 1 + \log x \right)^2} d x\]
\[ \Rightarrow I = \int_1^\left( 1 + \log 2 \right) \frac{1}{t^2} dt\]
\[ \Rightarrow I = \left[ \frac{- 1}{t} \right]_1^\left( 1 + \log 2 \right) \]
\[ \Rightarrow I = - \frac{1}{\left( 1 + \log 2 \right)} + 1\]
\[ \Rightarrow I = \frac{\log 2}{\log\ 2 + \log e}\]
\[ \Rightarrow I = \frac{\log 2}{\log\ 2e}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.