Advertisements
Advertisements
प्रश्न
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
पर्याय
a = `1/3`, b = 1
a = `(-1)/3`, b = 1
a = `(-1)/3`, b = –1
a = `1/3`, b = –1
उत्तर
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then a = `1/3`, b = –1.
Explanation:
Let I = `intx^3/sqrt(1 + x^2) "d"x`
Put 1 + x2 = t
⇒ 2x dx = dt
⇒ x dx = `"dt"/2`
∴ I = `1/2 int "t"/sqrt("t") "dt" - 1/2 int 1/sqrt("t") "dt"`
= `1/2 int sqrt("t") "dt" - 1/2 int "t"^((-1)/2) "dt"`
= `1/2 xx 2/3 ("t")^(3/2) - 1/2 * 2sqrt("t") + "C"`
= `1/3(1 + x^2)^(3/2) - sqrt(1 + x^2) + "C"`
But I = `"a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`
Comparing the like terms we get,
∴ a = `1/3` and b = –1.
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Solve each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.