Advertisements
Advertisements
प्रश्न
Solve each of the following integral:
उत्तर
\[\int_2^4 \frac{x}{x^2 + 1}dx\]
\[ = \frac{1}{2} \int_2^4 \frac{2x}{x^2 + 1}dx\]
\[ = \frac{1}{2} \times \left.\log\left( x^2 + 1 \right)\right|_2^4 ...................\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = \frac{1}{2}\left( \log17 - \log5 \right)\]
\[ = \frac{1}{2}\log\left( \frac{17}{5} \right) .............\left( \log a - \log b = \log\frac{a}{b} \right)\]
APPEARS IN
संबंधित प्रश्न
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`