Advertisements
Advertisements
प्रश्न
उत्तर
\[where\ h = \frac{b - a}{n}\]
\[Here a = 0, b = 2, f\left( x \right) = x^2 + 2x + 1, h = \frac{2 - 0}{n} = \frac{2}{n}\]
\[Therefore, \]
\[I = \int_0^2 \left( x^2 + 2x + 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 0 + 1 \right) + \left( h^2 + 2h + 1 \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 + 2\left( n - 1 \right)h + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + 2h\left\{ 1 + 2 + . . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ n + \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} + 2n - 2 \right]\]
\[ = \lim_{n \to \infty} 2\left\{ 3 + \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{2}{n} \right\}\]
\[ = 6 + \frac{8}{3}\]
\[ = \frac{26}{3}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: