Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^2 \left( \frac{x - 1}{x^2} \right) e^x\ d\ x . Then, \]
\[I = \int_1^2 \left( \frac{e^x}{x} - \frac{e^x}{x^2} \right) dx\]
\[ \Rightarrow I = \int_1^2 \frac{e^x}{x} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left\{ \left[ \frac{e^x}{x} \right]_1^2 - \int_1^2 \frac{- 1}{x^2} e^x dx \right\} - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 + \int_1^2 \frac{e^x}{x^2} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 \]
\[ \Rightarrow I = \frac{e^2}{2} - e\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.