Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^7 x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^7 \left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^7 x} d x ..............(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^7 x} + \frac{1}{1 + \tan^7 x} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{2 + co t^7 x + \tan^7 x}{\left( 1 + co t^7 x \right)\left( 1 + \tan^7 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + co t^7 x + \tan^7 x}{2 + co t^7 x + \tan^7 x}dx\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f is an integrable function, show that
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^3/(x + 1)` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`