Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\frac{1}{2} \frac{1}{\sqrt{1 - x^2}} d x . Then, \]
\[I = \left[ \sin^{- 1} x \right]_0^\frac{1}{2} \]
\[ \Rightarrow I = \sin^{- 1} \frac{1}{2} - \sin^{- 1} 0\]
\[ \Rightarrow I = \frac{\pi}{6} - 0\]
\[ \Rightarrow I = \frac{\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`