Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{6} \cos^{- 3} 2\theta \sin\ 2\theta\ d\ \theta . Then, \]
\[I = \int_0^\frac{\pi}{6} \frac{\sin 2\theta}{\cos^3 2\theta} d \theta\]
\[Let\ \cos 2\theta = t . Then, - 2 \sin 2\theta\ d\theta = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \frac{\pi}{6}, t = \frac{1}{2}\]
\[ \therefore I = \frac{- 1}{2} \int_1^\frac{1}{2} \frac{dt}{t^3}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \frac{1}{2 t^2} \right]_1^\frac{1}{2} \]
\[ \Rightarrow I = \frac{1}{2}\left( 2 - \frac{1}{2} \right)\]
\[ \Rightarrow I = \frac{3}{4}\]
APPEARS IN
संबंधित प्रश्न
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.