Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
उत्तर
\[\int_0^\frac{\pi}{4} \tan^4 x d x\]
\[ = \int_0^\frac{\pi}{4} \tan^2 x\left( se c^2 x - 1 \right) d x\]
\[ = \int_0^\frac{\pi}{4} \tan^2 x se c^2 x dx - \int_0^\frac{\pi}{4} \tan^2 x dx\]
\[ = \left[ \frac{\tan^3 x}{3} \right]_0^\frac{\pi}{4} - \left[ \tan x - x \right]_0^\frac{\pi}{4} \]
\[ = \frac{1}{3} - 1 + \frac{\pi}{4}\]
\[ = \frac{\pi}{4} - \frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
Γ(1) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`