Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[ = \left.\frac{- \cos2x}{2}\right|_0^\frac{\pi}{4} \]
\[ = - \frac{1}{2}\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ = - \frac{1}{2} \times \left( 0 - 1 \right)\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: