Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
उत्तर
We have,
\[I = \int_0^1 x \left( \tan^{- 1} x \right)^2 d x\]
\[\text{Putting }\tan^{- 1} x = u\]
\[ \Rightarrow x = \tan u\]
\[ \Rightarrow dx = \sec^2 u du\]
\[\text{When }x \to 0; u \to 0\]
\[\text{and }x \to 1; u \to \frac{\pi}{4}\]
\[ \therefore I = \int_0^\frac{\pi}{4} \left( \tan u \right) u^2 \sec^2 u\ du\]
\[ = \int_0^\frac{\pi}{4} u^2 \tan u \sec^2 u\ du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2u \frac{\tan^2 u}{2} du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \left( \sec^2 u - 1 \right) du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \sec^2 u\ du + \int_0^\frac{\pi}{4} u\ du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} \tan u\ du + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \left[ \log \left| \sec u \right| \right]_0^\frac{\pi}{4} + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]
\[ = \frac{\pi^2}{16} \times \frac{1}{2} - \frac{\pi}{4} + \log\sqrt{2} + \frac{\pi^2}{32}\]
\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \log\sqrt{2}\]
\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2}\log 2\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(x) is a continuous function defined on [−a, a], then prove that
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`