Advertisements
Advertisements
Question
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
Solution
We have,
\[I = \int_0^1 x \left( \tan^{- 1} x \right)^2 d x\]
\[\text{Putting }\tan^{- 1} x = u\]
\[ \Rightarrow x = \tan u\]
\[ \Rightarrow dx = \sec^2 u du\]
\[\text{When }x \to 0; u \to 0\]
\[\text{and }x \to 1; u \to \frac{\pi}{4}\]
\[ \therefore I = \int_0^\frac{\pi}{4} \left( \tan u \right) u^2 \sec^2 u\ du\]
\[ = \int_0^\frac{\pi}{4} u^2 \tan u \sec^2 u\ du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2u \frac{\tan^2 u}{2} du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \left( \sec^2 u - 1 \right) du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \sec^2 u\ du + \int_0^\frac{\pi}{4} u\ du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} \tan u\ du + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \left[ \log \left| \sec u \right| \right]_0^\frac{\pi}{4} + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]
\[ = \frac{\pi^2}{16} \times \frac{1}{2} - \frac{\pi}{4} + \log\sqrt{2} + \frac{\pi^2}{32}\]
\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \log\sqrt{2}\]
\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2}\log 2\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.