English

1 ∫ 0 X ( Tan − 1 X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]

Sum

Solution

We have,

\[I = \int_0^1 x \left( \tan^{- 1} x \right)^2 d x\]

\[\text{Putting }\tan^{- 1} x = u\]

\[ \Rightarrow x = \tan u\]

\[ \Rightarrow dx = \sec^2 u du\]

\[\text{When }x \to 0; u \to 0\]

\[\text{and }x \to 1; u \to \frac{\pi}{4}\]

\[ \therefore I = \int_0^\frac{\pi}{4} \left( \tan u \right) u^2 \sec^2 u\ du\]

\[ = \int_0^\frac{\pi}{4} u^2 \tan u \sec^2 u\ du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2u \frac{\tan^2 u}{2} du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \left( \sec^2 u - 1 \right) du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \sec^2 u\ du + \int_0^\frac{\pi}{4} u\ du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} \tan u\ du + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \left[ \log \left| \sec u \right| \right]_0^\frac{\pi}{4} + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]

\[ = \frac{\pi^2}{16} \times \frac{1}{2} - \frac{\pi}{4} + \log\sqrt{2} + \frac{\pi^2}{32}\]

\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \log\sqrt{2}\]

\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2}\log 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 24 | Page 121

RELATED QUESTIONS

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×