Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^\frac{\pi}{4} \sec x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{4} \sec x \frac{\sec x + \tan x}{\sec x + \tan x} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} d x\]
\[Put u = \sec x + \tan x\]
\[ \Rightarrow du = \sec^2 x + \sec x \tan x dx\]
\[ \therefore \int_0^\frac{\pi}{4} \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} d x = \int\frac{du}{u}\]
\[ \Rightarrow I = \left[ \log u \right]\]
\[ \Rightarrow I = \left[ \log \left( \sec x + \tan x \right) \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \log \left( \sec\frac{\pi}{4} + \tan\frac{\pi}{4} \right) - \log \left( \sec 0 + \tan 0 \right)\]
\[ \Rightarrow I = \log (\sqrt{2} + 1) - \log 1\]
\[ \Rightarrow I = \log (\sqrt{2} + 1)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
Γ(1) is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.