Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let I} =\int_{- 1}^1 \left| xcos\pi x \right|dx\]
Consider
\[f\left( - x \right) = \left| \left( - x \right)cos\pi\left( - x \right) \right| = \left| - xcos\pi x \right| = \left| xcos\pi x \right| = f\left( x \right)\]
\[\therefore I = \int_{- 1}^1 \left| xcos\pi x \right|dx\]
\[ = 2 \int_0^1 \left| xcos\pi x \right|dx ...............\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
Now,
\[\left| xcos\pi x \right| = \begin{cases}xcos\pi x, & \text{if }0 \leq x \leq \frac{1}{2} \\ - xcos\pi x, & \text{if }\frac{1}{2} < x \leq 1\end{cases}\]
\[\therefore I = 2\left[ \int_0^\frac{1}{2} xcos\pi xdx + \int_\frac{1}{2}^1 \left( - xcos\pi x \right)dx \right]\]
\[ = \left.2\left[ x \frac{sin\pi x}{\pi}\right|_0^\frac{1}{2} -\left. \frac{1}{\pi} \int_0^\frac{1}{2} sin\pi xdx \right] - 2\left[ x \frac{sin\pi x}{\pi}\right|_\frac{1}{2}^1 - \frac{1}{\pi} \int_\frac{1}{2}^1 sin\pi xdx \right]\]
\[ = 2\left( \frac{1}{2\pi}\sin\frac{\pi}{2} - 0 \right) - \left.\frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_0^\frac{1}{2} - \left.2\left( \frac{1}{\pi}sin\pi - \frac{1}{2\pi}\sin\frac{\pi}{2} \right) + \frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_\frac{1}{2}^1 \]
\[ = \frac{1}{\pi} + \frac{2}{\pi^2}\left( \cos\frac{\pi}{2} - \cos0 \right) + \frac{1}{\pi} - \frac{2}{\pi^2}\left( cos\pi - \cos\frac{\pi}{2} \right)\]
\[ = \frac{1}{\pi} - \frac{2}{\pi^2} + \frac{1}{\pi} + \frac{2}{\pi^2}\]
\[ = \frac{2}{\pi}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Prove that:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.