English

Evaluate the Following Integral: ∫ 1 − 1 | X C O S π X | D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 

Sum

Solution

\[\text{Let I} =\int_{- 1}^1 \left| xcos\pi x \right|dx\]

Consider

\[f\left( x \right) = \left| xcos\pi x \right|\]

\[f\left( - x \right) = \left| \left( - x \right)cos\pi\left( - x \right) \right| = \left| - xcos\pi x \right| = \left| xcos\pi x \right| = f\left( x \right)\]

\[\therefore I = \int_{- 1}^1 \left| xcos\pi x \right|dx\]
\[ = 2 \int_0^1 \left| xcos\pi x \right|dx ...............\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]

Now,

\[\left| xcos\pi x \right| = \begin{cases}xcos\pi x, & \text{if  }0 \leq x \leq \frac{1}{2} \\ - xcos\pi x, & \text{if }\frac{1}{2} < x \leq 1\end{cases}\]

\[\therefore I = 2\left[ \int_0^\frac{1}{2} xcos\pi xdx + \int_\frac{1}{2}^1 \left( - xcos\pi x \right)dx \right]\]
\[ = \left.2\left[ x \frac{sin\pi x}{\pi}\right|_0^\frac{1}{2} -\left. \frac{1}{\pi} \int_0^\frac{1}{2} sin\pi xdx \right] - 2\left[ x \frac{sin\pi x}{\pi}\right|_\frac{1}{2}^1 - \frac{1}{\pi} \int_\frac{1}{2}^1 sin\pi xdx \right]\]
\[ = 2\left( \frac{1}{2\pi}\sin\frac{\pi}{2} - 0 \right) - \left.\frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_0^\frac{1}{2} - \left.2\left( \frac{1}{\pi}sin\pi - \frac{1}{2\pi}\sin\frac{\pi}{2} \right) + \frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_\frac{1}{2}^1 \]
\[ = \frac{1}{\pi} + \frac{2}{\pi^2}\left( \cos\frac{\pi}{2} - \cos0 \right) + \frac{1}{\pi} - \frac{2}{\pi^2}\left( cos\pi - \cos\frac{\pi}{2} \right)\]
\[ = \frac{1}{\pi} - \frac{2}{\pi^2} + \frac{1}{\pi} + \frac{2}{\pi^2}\]
\[ = \frac{2}{\pi}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 35 | Page 95

RELATED QUESTIONS

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

Γ(1) is


Choose the correct alternative:

`Γ(3/2)`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×