Advertisements
Advertisements
Question
Solution
\[\int_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) d x\]
\[ = \int_0^1 2 \tan^{- 1} x\]
\[ = 2 \left[ x \tan^{- 1} x \right]_0^1 - 2 \int_0^1 \frac{x}{1 + x^2}dx\]
\[ = 2 \left[ x \tan^{- 1} x \right]_0^1 - \left[ \log\left( 1 + x^2 \right) \right]_0^1 \]
\[ = 2\frac{\pi}{4} - 0 - \log2 + 0\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Evaluate :
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: