Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \sin x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} - 2x \cos x dx\]
\[\text{Again, integratting by parts}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + \left\{ 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1 \sin x dx \right\}\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{2} + 2 \left[ x \sin x \right]_0^\frac{\pi}{2} - \left[ - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} 0 - 0 + 2\frac{\pi}{2} - 0 + 0 - 2\]
\[ \Rightarrow I = \pi - 2\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Prove that:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`