Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_{- 1}^1 \frac{1}{x^2 + 2x + 5} d x . Then, \]
\[ I = \int_{- 1}^1 \frac{1}{\left( x^2 + 2x + 1 \right) + 4} d x\]
\[ \Rightarrow I = \int_{- 1}^1 \frac{1}{\left( x + 1 \right)^2 + 2^2} d x\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} \frac{\left( x + 1 \right)}{2} \right]_{- 1}^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( \tan^{- 1} 1 - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow I = \frac{\pi}{8}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.