English

1 ∫ − 1 1 X 2 + 2 X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

Solution

\[Let\ I = \int_{- 1}^1 \frac{1}{x^2 + 2x + 5} d x . Then, \]
\[ I = \int_{- 1}^1 \frac{1}{\left( x^2 + 2x + 1 \right) + 4} d x\]
\[ \Rightarrow I = \int_{- 1}^1 \frac{1}{\left( x + 1 \right)^2 + 2^2} d x\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} \frac{\left( x + 1 \right)}{2} \right]_{- 1}^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( \tan^{- 1} 1 - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow I = \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 44 | Page 17

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×