Advertisements
Advertisements
Question
Options
π
π/2
0
2π
Solution
0
\[I = \int_0^\frac{\pi}{2} \sin2x \log \tan x\ d x . . . . . \left( 1 \right)\]
\[I = \int_0^\frac{\pi}{2} \sin\left( \pi - 2x \right) \log \tan\left( \frac{\pi}{2} - x \right) d x\]
\[I = \int_0^\frac{\pi}{2} \sin2x \log \cot x\ d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}, \]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log \tan x + \log \cot x \right) d x\]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log \tan x \cot x \right) d x\]
\[2I = \int_0^\frac{\pi}{2} \sin2x\left( \log1 \right) d x\]
\[I = 0\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.