Advertisements
Advertisements
Question
Options
`15/16`
`3/16`
`-3/16`
`-16/3`
Solution
`-16/3`
`I=int_0^1x/(1-x)^(5/4)dx`
Put, 1 - x = t ⇒ x = 1 - t
⇒ dx = -dt
x | 0 | 1 |
t | 1 | 0 |
`I=int_1^0((1-t)(-dt))/t^(5/4)`
`I=int_0^1(1-t)/t^(5/4)dt`
`I=int_0^1(t^(-5/4)-t^(-1/4))dt`
`I=[t^(-1/4)/(-1/4)-t^(3/4)/(3/4)]_0^1`
`I=-4-4/3`
`I=-16/3`
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`