Advertisements
Advertisements
Question
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Solution
Let x2 = t.
Then `x^2/(x^4 + x^2 - 2) = "t"/("t"^2 + "t" - 2)`
= `"t"/(("t" + 2)("t" - 1))`
= `"A"/("t" + 2) + "B"/("t" - 1)`
So t = A(t – 1) + B(t + 2)
Comparing coefficients, we get A = `2/3`, B = `1/3`.
So `x^2/(x^4 + x^2 - 2) = 2/3 1/(x^2 + 2) + 1/3 1/(x^2 - 1)`
Therefore, `int x^2/(x^4 + x^2 - 2) "d"x`
= `2/3 int 1/(x^2 + 2) "d"x + 1/3 int "dx"/(x^2 - 1)`
= `2/3 1/sqrt(2) tan^-1 x/sqrt(2) + 1/6 log |(x + 1)/(x + 1)| + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`