English

Evaluate d∫x2dxx4+x2-2 - Mathematics

Advertisements
Advertisements

Question

Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`

Sum

Solution

Let x2 = t.

Then `x^2/(x^4 + x^2 - 2) = "t"/("t"^2 + "t" - 2)`

= `"t"/(("t" + 2)("t" - 1))`

= `"A"/("t" + 2) + "B"/("t" - 1)`

So t = A(t – 1) + B(t + 2)

Comparing coefficients, we get A = `2/3`, B = `1/3`.

So `x^2/(x^4 + x^2 - 2) = 2/3 1/(x^2 + 2) + 1/3 1/(x^2 - 1)`

Therefore, `int x^2/(x^4 + x^2 - 2) "d"x`

= `2/3 int 1/(x^2 + 2) "d"x + 1/3 int "dx"/(x^2 - 1)`

= `2/3 1/sqrt(2) tan^-1  x/sqrt(2) + 1/6 log |(x + 1)/(x + 1)| + "C"`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 154]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 15 | Page 154

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^{15} \left[ x \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×