Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\pi 5 \left( 5 - 4\cos \theta \right)^\frac{1}{4} \sin \theta\ d \theta . \]
\[Let\left( 5 - 4 \cos \theta \right) = t . Then, 4 \sin \theta\ d\theta = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \pi, t = 9\]
\[ \therefore I = \frac{5}{4} \int_1^9 t^\frac{1}{4} dt\]
\[ \Rightarrow I = \frac{5}{4} \left[ \frac{4 t^\frac{5}{4}}{5} \right]_1^9 \]
\[ \Rightarrow I = \left( 9\sqrt{3} - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`