English

Π ∫ 0 5 ( 5 − 4 Cos θ ) 1 / 4 Sin θ D θ - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

Solution

\[Let\ I = \int_0^\pi 5 \left( 5 - 4\cos \theta \right)^\frac{1}{4} \sin \theta\ d \theta . \]

\[Let\left( 5 - 4 \cos \theta \right) = t . Then, 4 \sin \theta\ d\theta = dt\]

\[When\ \theta = 0, t = 1\ and\ \theta = \pi, t = 9\]

\[ \therefore I = \frac{5}{4} \int_1^9 t^\frac{1}{4} dt\]

\[ \Rightarrow I = \frac{5}{4} \left[ \frac{4 t^\frac{5}{4}}{5} \right]_1^9 \]

\[ \Rightarrow I = \left( 9\sqrt{3} - 1 \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 42 | Page 39

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi x \sin^3 x\ dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×