Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi 5 \left( 5 - 4\cos \theta \right)^\frac{1}{4} \sin \theta\ d \theta . \]
\[Let\left( 5 - 4 \cos \theta \right) = t . Then, 4 \sin \theta\ d\theta = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \pi, t = 9\]
\[ \therefore I = \frac{5}{4} \int_1^9 t^\frac{1}{4} dt\]
\[ \Rightarrow I = \frac{5}{4} \left[ \frac{4 t^\frac{5}{4}}{5} \right]_1^9 \]
\[ \Rightarrow I = \left( 9\sqrt{3} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f is an integrable function, show that
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find: `int logx/(1 + log x)^2 dx`