Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \cos^4 x\ dx\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \left( \cos^2 x \right)^2 dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos 2x \right)^2}{4} dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + \cos^2 2x + 2 \cos 2x \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + 2 \cos 2x + \frac{1 + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( \frac{3 + 4 \cos 2x + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \left[ \frac{3x}{2} + \frac{2 \sin 2x}{2} + \frac{\sin 4x}{8} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{4}\left[ \frac{3\pi}{4} + 0 \right]\]
\[ \Rightarrow I = \frac{3\pi}{16}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`