Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 x \left( 1 - x \right)^5 d x . Then, \]
\[I = \int_0^1 \left( x - 1 + 1 \right) \left( 1 - x \right)^5 d x\]
\[ \Rightarrow I = \int_0^1 \left[ - \left( 1 - x \right)^6 + \left( 1 - x \right)^5 \right] d x\]
\[ \Rightarrow I = \left[ \frac{\left( 1 - x \right)^7}{7} \right]_0^1 - \left[ \frac{\left( 1 - x \right)^6}{6} \right]_0^1 \]
\[ \Rightarrow I = - \frac{1}{7} + \frac{1}{6}\]
\[ \Rightarrow I = \frac{1}{42}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Prove that:
Write the coefficient a, b, c of which the value of the integral
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x