Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
उत्तर
Using the property
`int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^(pi/2) (sin^7x)/(sin^7x + cos^7x) "d"x` ........(1)
I = `int_0^(pi/2) (sin^7(pi/2 - x))/(sin^7(pi/2 - x) + cos^7(pi/2 - x)) "d"x`
I = `int_0^(pi/2) (cos^7x)/(cos^7x + sin^x) "d"x` .........(2)
Adding (1) and (2)
I + I = `int_0^(pi/2) (sin^7x + cos^7x)/(sin^7x + cos^7x "d"x`
2I `int_0^(pi/2) "d"x`
2I = `[x]_0^(pi/2) = [pi/2 - 0]`
2I = `pi/2`
⇒ I = `pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.