Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I } = \int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
Put
When `xrarr0, thetararr0`
When \[x \to \frac{1}{2}, \theta \to \frac{\pi}{6}\]
\[\therefore I = \int_0^\frac{\pi}{6} \frac{\sin\theta \sin^{- 1} \left( \sin\theta \right)}{\cos\theta}\cos\theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \theta\sin\theta d\theta\]
Applying integration by parts, we have
\[ = - \left( \frac{\pi}{6}\cos\frac{\pi}{6} - 0 \right) + \int_0^\frac{\pi}{6} \cos\theta d\theta\]
\[ = - \frac{\pi}{6} \times \frac{\sqrt{3}}{2} + \sin\theta_0^\frac{\pi}{6} \]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \sin\frac{\pi}{6} - \sin0 \right)\]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \frac{1}{2} - 0 \right)\]
\[ = \frac{1}{2} - \frac{\pi}{4\sqrt{3}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
`Γ(3/2)`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.