मराठी

If F(X) is a Continuous Function Defined on [−A, A], Then Prove that a ∫ − a F ( X ) D X = a ∫ 0 { F ( X ) + F ( − X ) } D X - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]
बेरीज

उत्तर

\[Let\ I = \int_{- a}^a f\left( x \right) d x\]
\[\text{By Additive property}\]
\[I = \int_{- a}^0 f\left( x \right) d x + \int_0^a f\left( x \right) d x\]
\[Let x = - t, then\ dx = - dt, \]
\[When\ x = - a, t = a, x = 0, t = 0\]
\[Hence\ \int_{- a}^0 f\left( x \right) d x = - \int_a^0 f\left( - t \right) d t\]
\[ = \int_0^a f\left( - t \right) d t = \int_0^a f\left( - x \right) dx .......................\left( \text{Changing the variable} \right)\]
Therefore,
\[I = \int_0^a f\left( - x \right) d x + \int_0^a f\left( x \right) d x\]
\[ = \int_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]
\[\text{Hence, proved} .\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 48 | पृष्ठ ९६

संबंधित प्रश्‍न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^\pi \cos^5 x\ dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×