Advertisements
Advertisements
प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
उत्तर
\[Let\ I = \int_{- a}^a f\left( x \right) d x\]
\[\text{By Additive property}\]
\[I = \int_{- a}^0 f\left( x \right) d x + \int_0^a f\left( x \right) d x\]
\[Let x = - t, then\ dx = - dt, \]
\[When\ x = - a, t = a, x = 0, t = 0\]
\[Hence\ \int_{- a}^0 f\left( x \right) d x = - \int_a^0 f\left( - t \right) d t\]
\[ = \int_0^a f\left( - t \right) d t = \int_0^a f\left( - x \right) dx .......................\left( \text{Changing the variable} \right)\]
Therefore,
\[I = \int_0^a f\left( - x \right) d x + \int_0^a f\left( x \right) d x\]
\[ = \int_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]
\[\text{Hence, proved} .\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`