Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = a, b = b, f\left( x \right) = x, h = \frac{b - a}{n}\]
Therefore,
\[I = \int_a^b x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ a + \left( a + h \right) + \left( a + 2h \right) + . . . . . . . . . . + \left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ na + h\left\{ 1 + 2 + 3 + . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ na + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{h \to 0} \frac{b - a}{n}\left[ na + \frac{\left[ b - a \right]\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{h \to 0} \left[ \left( b - a \right)a + \frac{\left( b - a \right)\left( b - a - h \right)}{2} \right]\]
\[ = \left( b - a \right)a + \frac{\left( b - a \right)^2}{2}\]
\[ = \frac{2ab - 2 a^2 + b^2 + a^2 - 2ab}{2}\]
\[ = \frac{b^2 - a^2}{2}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`