Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = a, b = b, f\left( x \right) = x, h = \frac{b - a}{n}\]
Therefore,
\[I = \int_a^b x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ a + \left( a + h \right) + \left( a + 2h \right) + . . . . . . . . . . + \left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ na + h\left\{ 1 + 2 + 3 + . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ na + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{h \to 0} \frac{b - a}{n}\left[ na + \frac{\left[ b - a \right]\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{h \to 0} \left[ \left( b - a \right)a + \frac{\left( b - a \right)\left( b - a - h \right)}{2} \right]\]
\[ = \left( b - a \right)a + \frac{\left( b - a \right)^2}{2}\]
\[ = \frac{2ab - 2 a^2 + b^2 + a^2 - 2ab}{2}\]
\[ = \frac{b^2 - a^2}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Γ(1) is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`