Advertisements
Advertisements
Question
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Options
- \[\frac{1}{3 \ln x}\]
- \[\frac{1}{3 \ln x} - \frac{1}{2 \ln x}\]
(ln x)−1 x (x − 1)
- \[\frac{3 x^2}{\ln x}\]
Solution
(ln x)−1 x (x − 1)
Using Newton Leibnitz formula
\[f' (x) = \frac{1}{\log_e x^3}(3 x^2 ) - \frac{1}{\log_e x^2}(2x) \]
\[= \frac{3 x^2}{3\ln x}- \frac{2x}{2\ln x} \]
\[= \frac{x^2}{\ln x} - \frac{x}{\ln x} \]
\[= \frac{1}{\ln x}x(x - 1) \]
\[= {(\ln x)}^{- 1} x(x - 1)\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Prove that:
Solve each of the following integral:
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int x^3/(x + 1)` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.