Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} d x......................(1)\]
\[I = \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{9 - x} - \sqrt[4]{x + 4}}dx ...........................\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[I = - \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx ...................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} - \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx \]
\[ = \int_0^5 \frac{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx\]
\[ = \int_0^5 dx\]
\[ = \left[ x \right]_0^5 \]
\[ = 5\]
\[Hence\ I = \frac{5}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Choose the correct alternative:
Γ(n) is