Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
Solution
\[Let, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 \left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^3 x} d x ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan^3 x} + \frac{1}{1 + co t^3 x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan^3 x + co t^3 x}{\left( 1 + \tan^3 x \right)\left( 1 + co t^3 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x}dx\]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left( x \right)_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence, I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If f is an integrable function, show that
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.